Control of Mobile Robots

Module 7
Putting It All Together

How make mobile robots move in effective, safe, predictable, and collaborative ways using modern control theory?
Lecture 7.1 – Approximations and Abstractions

- We need to understand when and how our models are relevant!
Lecture 7.1 – Approximations and Abstractions

- We need to understand when and how our models are relevant!

“Slow and steady wins the race”

Don’t rush it when doing the quizzes…
Main Assumptions Made So Far

- Dynamics:

\[\dot{x} = u, \quad x \in \mathbb{R}^2 \]

Not even close to being reasonable!

- Sensors:

More or less ok…
What’s The Problem?

\[\dot{x} = u, \quad x \in \mathbb{R}^2 \]

- Recall the unicycle model (e.g., for describing differential drive mobile robots)

\[
\begin{aligned}
\dot{x} &= v \cos \phi \\
\dot{y} &= v \sin \phi \\
\dot{\phi} &= \omega
\end{aligned}
\]
Next Few Lectures…

• How do we make a unicycle robot “act” like $\dot{x} = u$?
Lecture 7.2 – A Layered Architecture

• We have a problem: Even with a simple robot model, the navigation architecture becomes rather involved

• Would like to be able to reuse this while allowing for more realistic robot models
All Good Things Come in Threes

• Standard navigation systems are typically decoupled along three different levels of abstraction:
 – Strategic Level: Where to go (high-level, long-term)?
 – Operational Level: Where to go (low-level, short-term)?
 – Tactical Level: How to go there?
All Good Things Come in Threes

• Or slightly less militaristic:
 – High-Level Planning: Where should the (intermediary) goal points be? **Not in this course!**
 – Low-Level Planning: Which “direction” to move in-between goal points? **Use the navigation architecture!**
 – Execution: How make the robot move in those directions? **Control design with reference signal!**
High-Level Planning

- There are many AI methods (e.g., Dijkstra, Dynamic Programming, A*, D*, RRT…) for doing this!
Low-Level Planning

• We already know how to do this! Assume that

\[\dot{x} = u, \ x \in \mathbb{R}^2 \]

and get to work!

• The “output” is a desired direction (and magnitude) of travel
Execution-Level

• This is where we make the unicycle (or any other mobile robot) act like a simpler system over which we are performing the low-level planning
The Architecture

\[\dot{x} = f(x, u), \quad u = g(x, r) \]

- Next time: Let’s do this for the differential-drive mobile robot
Lecture 7.3 – Differential-Drive Trackers

• How should we design the tracker when the robot is a differential-drive mobile robot?
Recap: The Model

\[
\begin{align*}
\dot{x} &= \frac{R}{2} (v_r + v_\ell) \cos \phi \\
\dot{y} &= \frac{R}{2} (v_r + v_\ell) \sin \phi \\
\dot{\phi} &= \frac{R}{L} (v_r - v_\ell)
\end{align*}
\]

\[
\begin{align*}
v_r &= \frac{2v + \omega L}{2R} \\
v_\ell &= \frac{2v - \omega L}{2R}
\end{align*}
\]
Recap: Dealing With Angles

- How drive the robot in a specific direction?

\[
\begin{align*}
\dot{x} &= v \cos \phi \\
\dot{y} &= v \sin \phi \\
\dot{\phi} &= \omega
\end{align*}
\]

\[
e = \phi_d - \phi, \quad \omega = \text{PID}(e)
\]

\[
\text{PID}(e) = K_P e(t) + K_I \int_0^t e(\tau) d\tau + K_D \dot{e}(t)
\]
Adding In The Speed Component

• Let the output from the planner be \(u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \) (\(\dot{x} = u \))

\[
\begin{align*}
\dot{x} &= v \cos \phi \\
\dot{y} &= v \sin \phi \\
\phi &= \omega
\end{align*}
\]

\((x, y) \)

\[
\phi_d = \arctan \left(\frac{u_2}{u_1} \right)
\]

\[
\sqrt{x^2 + y^2} = \sqrt{v^2 \cos^2 \phi + v^2 \sin^2 \phi} = v
\]

\[
v = \|u\| \Rightarrow v = \sqrt{u_1^2 + u_2^2}
\]
The Complete Differential-Drive Architecture

Intermediary Waypoints

PLAN \((u_1, u_2)\) **TRACK** \((v_r, v_\ell)\)

\[
\phi_d = \text{atan} \left(\frac{u_2}{u_1} \right)
\]

\[
v = \sqrt{u_1^2 + u_2^2}
\]

\[
v_r = \frac{2v + \omega L}{2R}
\]

\[
v_\ell = \frac{2v - \omega L}{2R}
\]
Lecture 7.4 – A Clever Trick

- We can use a layered architecture for making differential drive robots act like $\dot{x} = u$
- Key idea: Plan using the simple dynamics, then track using some clever controller (PID?)
- Today: We can be even more clever!
Transforming the Unicycle

- What if we ignored the orientation and picked a different point on the robot as the point we care about?

\[
\begin{align*}
\begin{cases}
\dot{x} &= v \cos \phi \\
\dot{y} &= v \sin \phi \\
\dot{\phi} &= \omega
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\ddot{x} &= x + \ell \cos \phi \\
\ddot{y} &= y + \ell \sin \phi
\end{align*}
\]
New Dynamics

\[
\begin{align*}
\dot{x} &= v \cos \phi \\
\dot{y} &= v \sin \phi \\
\dot{\phi} &= \omega
\end{align*}
\]

\[
\begin{align*}
\tilde{x} &= x + \ell \cos \phi \\
\tilde{y} &= y + \ell \sin \phi
\end{align*}
\]

\[
\begin{align*}
\ddot{x} &= \dot{x} - \ell \dot{\phi} \sin \phi = v \cos \phi - \ell \omega \sin \phi \\
\ddot{y} &= \dot{y} + \ell \dot{\phi} \cos \phi = v \sin \phi + \ell \omega \cos \phi
\end{align*}
\]
New Inputs

- Let’s assume that we can control the new point directly

\[\dot{x} = u_1, \quad \dot{y} = u_2 \]

\[\dot{x} = v \cos \phi - \ell \omega \sin \phi = u_1 \]

\[\dot{y} = v \sin \phi + \ell \omega \cos \phi = u_2 \]

\[
\begin{bmatrix}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi \\
\end{bmatrix}
R(\phi)
\begin{bmatrix}
1 & 0 \\
0 & \ell \\
\end{bmatrix}
\begin{bmatrix}
v \\
\omega \\
\end{bmatrix} =
\begin{bmatrix}
u_1 \\
u_2 \\
\end{bmatrix}
\]
New Inputs

- Let’s assume that we can control the new point directly

\[\dot{x} = u_1, \dot{y} = u_2 \]

\[
R(\phi) \begin{bmatrix} 1 & 0 \\ 0 & \ell \end{bmatrix} \begin{bmatrix} v \\ \omega \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}
\]

\[
\begin{bmatrix} v \\ \omega \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{\ell} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}
\]
What’s The Point?

• Before:

\[(u_1, u_2) \quad \text{PLAN} \quad \rightarrow \quad (v, \omega) \quad \text{TRACK} \]

\[
e = \phi d - \phi, \quad \omega = \text{PID}(e)
\]

\[
v = \|u\|
\]
What’s The Point?

- Now:

\[
\begin{align*}
\text{PLAN} & \quad (u_1, u_2) \quad \text{TRANSFORM} \quad (v, \omega) \\
\text{PLAN} & \quad (u_1, u_2) \quad \text{TRANSFORM} \quad (v, \omega)
\end{align*}
\]

\[
\begin{bmatrix}
v \\
\omega
\end{bmatrix} =
\begin{bmatrix}
1 & 0 \\
0 & \frac{1}{\ell}
\end{bmatrix}
R(-\phi)
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix}
\]
Lecture 7.5 – Other Robot Classes

• Last time: It is indeed possible to make differential drive mobile robots “act” like $\dot{x} = u$
 – If we are willing to ignore orientation
 – And accept a small offset error
• Today: Does this generalize to other types of robots? And, what other types are there?
Other Models

- There are lots and lots of different types of robotic systems
- We cannot cover them all. Instead, we will focus on what they have in common:

 UNICYCLE
 \[\begin{align*}
 \dot{x} &= v \cos \phi \\
 \dot{y} &= v \sin \phi \\
 \dot{\phi} &= \omega
 \end{align*} \]

 States: position and orientation
 Inputs: Angular and transl. velocities
Other Models

- There are lots and lots of different types of robotic systems
- We cannot cover them all. Instead, we will focus on what they have in common:

 CAR-LIKE ROBOT

 \[
 \begin{align*}
 \dot{x} &= v \cos(\phi + \psi) \\
 \dot{y} &= v \sin(\phi + \psi) \\
 \dot{\phi} &= \frac{v}{l} \sin(\psi) \\
 \dot{\psi} &= u
 \end{align*}
 \]

 States: position, orientation, steering angle
 Inputs: Transl. vel. and steering angular vel.
Other Models

- There are lots and lots of different types of robotic systems
- We cannot cover them all. Instead, we will focus on what they have in common:

SEGWAY ROBOT

base: unicycle

pendulum:

\[
3(m_w + m_b)\dot{\dot{\phi}} - m_b d \cos \phi \ddot{\phi} - m_b d \sin \phi \cos \phi \dot{\psi} + m_b d^2 \sin \phi \cos \phi \dot{\phi} = \frac{L}{R} (\tau_L - \tau_R)
\]

\[
\frac{1}{(m_b d^2 \cos^2 \phi)} m_w + m_b d^2 \sin^2 \phi + \frac{m_b d \sin \phi (\dot{\phi}^2 + \dot{\psi}^2)}{I_3} + \frac{1}{R} (\tau_L + \tau_R)
\]

States: position, orientation, tilt angle, and velocities

Inputs: Wheel torques
There are lots and lots of different types of robotic systems. We cannot cover them all. Instead, we will focus on what they have in common:

FIXED-WING AIRCRAFT

\[
\begin{align*}
\dot{x} &= v \cos(\phi) \\
\dot{y} &= v \sin(\phi) \\
\dot{\phi} &= \omega \\
\dot{z} &= u
\end{align*}
\]

States: position, orientation, altitude
Inputs: Transl., angular, vertical vel.
Other Models

- There are lots and lots of different types of robotic systems
- We cannot cover them all. Instead, we will focus on what they have in common:

\[
\begin{align*}
\dot{x} &= v \cos(\phi) \\
\dot{y} &= v \sin(\phi) \\
\dot{\phi} &= \omega \\
\dot{z} &= u
\end{align*}
\]

States: position, orientation, altitude
Inputs: Transl., angular, vertical vel.
Punchline

- Everything (almost) involves POSE = position and heading!
- Everything (almost) with pose is almost a unicycle!
- So we can (almost) use what we have already done and then make the actual model class fit the unicycle – Just add a layer
 – Next lecture: Do this for the car robot!
Adding Constraints

• A lot of times we actually need constraints, which unfortunately make it harder to control the robots (not in this class)

UNICYCLE
\[\dot{x} = v \cos \phi \]
\[\dot{y} = v \sin \phi \]
\[\phi = \omega \]

DUBINS
\[\dot{x} = v \cos(\phi) \]
\[\dot{y} = v \sin(\phi) \]
\[\phi = \omega \]
\[v = 1, \; \omega \in [-1, 1] \]

REEDS-SHEPP
\[\dot{x} = v \cos(\phi) \]
\[\dot{y} = v \sin(\phi) \]
\[\phi = \omega \]
\[|v| = 1, \; \omega \in [-1, 1] \]
When is POSE Not Reasonable?

- Humanoids
- Snakes
- Mobile manipulators

- Next time: Cars (when it is ok...)
Lecture 7.6 – Car-Like Robots

• Claims:
 – Pose (position and heading) is central
 – Other “pose-based” models can be made to look like a unicycle
• Today: Car-like robots
Car Kinematics

• What’s different about the car is that it has four wheels.
• Only the front wheels turn, which means that the steering wheel angle ("=" front wheel angle) becomes important

\[
\begin{align*}
\dot{x} &= v \cos(\phi + \psi) \\
\dot{y} &= v \sin(\phi + \psi) \\
\dot{\phi} &= \frac{v}{\ell} \sin(\psi) \\
\dot{\psi} &= \sigma
\end{align*}
\]

states: \((x, y) \) position, \(\phi \) heading, \(\psi \) steering angle

inputs: \(v \) speed, \(\sigma \) angular steering velocity
Curvature Control

• How do we make this act like a unicycle?
• Assume a unicycle is driving along a circular arc

\[
\begin{align*}
\dot{x} &= v \cos(\phi + \psi) \\
\dot{y} &= v \sin(\phi + \psi) \\
\dot{\phi} &= \frac{v}{\ell} \sin(\psi) \\
\dot{\psi} &= \sigma
\end{align*}
\]

\[
\begin{align*}
\alpha &= \phi - \frac{\pi}{2} \\
x &= x_0 + \rho \cos(\alpha) \\
&= x_0 + \rho \sin(\phi) \\
\dot{x} &= \omega \rho \cos(\phi) \\
&= v \cos(\phi) \\
\rho &= \frac{v}{\omega}
\end{align*}
\]
Curvature Control

• Let’s redo this for the car

\[x = x_0 + \rho \sin(\phi + \psi) \]
\[\dot{x} = \rho(\dot{\phi} + \dot{\psi}) \cos(\phi + \psi) \]
\[\dot{\phi} = \frac{v}{\ell} \sin(\psi) \quad \dot{\psi} = 0 \]
\[= v \cos(\phi + \psi) \]

\[\rho = \frac{\ell}{\sin(\psi)} \]

\[\kappa = \frac{\sin(\psi)}{\ell} \]
Lining Up The Curvatures

\[
\begin{align*}
\kappa &= \frac{\omega}{v} & \kappa &= \frac{\sin(\psi)}{\ell} \\
\sin(\psi) &= \frac{\omega \ell}{v} \Rightarrow \psi_d &= \arcsin\left(\frac{\omega \ell}{v}\right)
\end{align*}
\]

But we can actually stay with sinus instead of dealing with arcsin!
An Almost P-Regulator

\[\dot{\psi} = \sigma \]
\[\sigma = C(\psi_d - \psi) \quad \sigma = C \left(\frac{\omega l}{v} - \sin(\psi) \right) \]
An Almost P-Regulator

\[\dot{\psi} = \sigma \]
\[\sigma = C(\psi_d - \psi) \]
\[\sigma = C \left(\frac{\omega l}{v} - \sin(\psi) \right) \]
Summing It Up

\[\sigma = C \left(\frac{\omega l}{v} - \sin(\psi) \right) \]
Lecture 7.7 – To Probe Further

• Believe it or not – there are lots of things not covered in this course!
Nonlinear and Optimal Control

\[\dot{x} = f(x, u) \]

\[\min_u \int_0^T L(x(t), u(t))dt + \Psi(x(T)) \]
Machine Learning

\[V^\pi(x_0) = \sum_{k=0}^{\infty} \gamma^k c(x_k, \pi(x_k)) \]

\[V^*(x) = \min_u \{ c(x, u) + \gamma V^*(f(x, u)) \} \]
Perception and Mapping
High-Level AI
To Probe Further

• Not only are there things not covered in the class, there are lots of things we don’t know yet!
Lecture 7.8 – In Conclusion

• That’s it folks!

• Ambition with the course:
 – Learn how to make mobile robots move in effective and safe ways using modern control theory
 – Appreciate the value of systematic thinking/design
 – Bridge the theory-practice gap
 – Have fun and spark further investigations
High-Level Punchline #1 – The Model

• Without a model, we cannot say much about how the system will behave:
 – Need models to predict behavior forward in time
 – Need models to be able to derive control laws in a systematic manner

• The model should be rich enough to be relevant yet simple enough to be useful

• Bananas vs. Non-bananas
High-Level Punchline #2 – Feedback

• Given a model, feedback control should be used to make the system behave the way we want it to (if possible)

\[\hat{x} = A\hat{x} + Bu + L(y - C\hat{x}) \]

\[u = -K\hat{x} \]

\[\dot{x} = Ax + Bu \]

\[y = Cx \]

• Stability, Tracking, Robustness
• State feedback and observers
High-Level Punchline #3 – Architectures

- Plan for simple systems, execute on the “real” system

\[\dot{x} = f(x, u), \quad u = g(x, r) \]

- Three abstraction layers
- Differential-drive robots
High-Level Punchline #4 – Whatever…

- Don’t take my word for it
- Experiment and tweak
- The field is certainly not done yet
THANKS!

Amy LaViers
Fatimah Wirth

All of you!

Brian Wilson
Greg Droge